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Abstract

A least-squares meshfree method (LSMFM) based on the first-order velocity–pressure–vorticity formulation for

two-dimensional steady incompressible viscous flow is presented. The discretization of all governing equations is imple-

mented by the least-squares method. The equal-order moving least-squares (MLS) approximation is employed. Gauss

quadrature is used in the background cells constructed by the quadtree algorithm and the boundary conditions are

enforced by the penalty method. The matrix-free element-by-element Jacobi preconditioned conjugate method is

applied to solve the discretized linear systems. A numerical example with analytical solution for the Stokes problem

is devised to analyze the error estimates of the LSMFM. Also, cavity-driven flow for the Stokes problem and the flow

past a circular cylinder at low Reynolds numbers for the steady incompressible viscous flow are solved. Through the

comparisons of the LSMFM�s results with other experimental and numerical results, the numerical features of the pre-

sented LSMFM are investigated and discussed.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In computational fluid dynamics (CFD), various finite elements methods, finite difference methods or

finite volume methods for incompressible fluid flow have been developed. Typically four approaches are
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commonly taken to implement the discretization process in finite element methods based on the velocity–

pressure formulation. They are the classical Galerkin mixed method [1] (including the projection methods

[2]), penalty method [3], streamline upwind Petrov–Galerkin (SUPG) method [4] and least-squares method

[5], respectively. The classical Galerkin mixed method is restricted by Ladyzhenskaya–Babuška–Brezzi

(LBB) condition. The resulting algebraic matrix is non-symmetric and some oscillations on the result of
pressure are observed. In the penalty method, the penalty parameter affects the accuracy and convergence

of the solution. In the SUPG method, resulting algebraic system is non-symmetric. Thus the leading three

methods are not always satisfactory methods for large-scale problems in CFD. Compared with the former

three methods, least-squares method is robust, which is based on the minimization of the squared residuals.

The least-squares method can overcome the above difficulties. It can reduce oscillations and instability of

the solutions from the methods based on Galerkin formulation, and its resulting system matrix is symmetric

and positive definite; it is easier to use equal-order approximations on all variables which are computed in

the fully coupled manner and can be efficiently solved by iterative methods for the large-scale computation;
no special treatments, such as upwinding or adjustable parameters are required.

In attempts to reduce the meshing-related difficulties, many meshfree methods have been developed.

Among them are the smooth particle hydrodynamics (SPH) [6,7], generalized finite difference method

(GFDM) [8], element-free Galerkin method (EFGM) [9,10], reproducing kernel particle method (RKPM)

[11,12], partition of unity finite element method (PUM) [13], hp-cloud method [14,15], meshless local Pet-

rov–Galerkin approach (MLPG) [16], diffuse element method (DEM) [17], etc. Meshfree method does

not involve remeshing process and easy to realize adaptivity strategy. Besides these, the first derivatives

of all variables are continuous in the whole computation domain even if the linear basis function is used,
which is impossible for C0 element in FEM. For CFD problems, the meshfree methods have recently

been employed. Liu et al. [18] used the reproducing kernel particle method (RKPM) with SUPG formu-

lation to solve 2D advection–diffusion equation. Sadat and Couturier [19] employed the diffuse element

method (DEM) with the project method to study the laminar natural convection problem. Yagawa and

Shirazaki [20] applied the free mesh method (FMM) with the weighted residual-Galerkin method to un-

steady two- dimensional incompressible viscous flow. Cheng and Liu [21] adopted the finite point method

(FPM) with the discretization defined by the positions of points to analyze two-dimensional driven cavity

flow. Kim and Kim [22] presented some analyses of fluids by meshfree point collocation method
(MPCM).

Recently, the least-squares meshfree method (LSMFM) was proposed by Park and Youn [23]. It com-

bines the advantages of least-square method and meshfree approximation to devise a so-called truly mesh-

free method. Its effectiveness comes from the robustness of the least-squares method to integration errors.

This implies that simple schemes for generating integration points can be used without degrading the solu-

tion accuracy. The convergences under inaccurate integration and an adaptive scheme with a posteriori

error estimates for LSMFM have been studied [24,25]. However, the works with LSMFM has been limited

to linear problems such as Poisson equation, and thus its application to various engineering fields should be
investigated. In this paper, the LSMFM based on the first-order velocity–pressure–vorticity formulation for

two- dimensional steady incompressible viscous flow is presented and through numerical examples its valid-

ity and performance are studied.
2. Velocity–pressure–vorticity formulation

Introducing the vorticity as an independent variable, the second-order velocity–pressure formula for the
steady incompressible Navier–Stokes equations can be reduced to the first-order velocity–pressure–vorticity

expression:



184 X.K. Zhang et al. / Journal of Computational Physics 206 (2005) 182–207
ou
ox

þ ov
oy

¼ 0;

u
ou
ox

þ v
ou
oy

þ op
ox

þ 1

Re
ox
oy

¼ fx;

u
ov
ox

þ v
ov
oy

þ op
oy

� 1

Re
ox
ox

¼ fy ;

xþ ou
oy

� ov
ox

¼ 0; in X;

ð1Þ
Here all variables are non-dimensionalized, u and v are the component of the velocity, p the pressure, x
the z-component of vorticity, (fx, fy) the body force vector, and the Reynolds number Re is defined

as:
Re ¼ V 0D=m; ð2Þ
where V0 is the characteristic velocity, D is the characteristic length of the domain X and m is the kinematic

viscosity.

The convective term can be linearized by the successive substitution or Newton�s method, and then Eq.

(2) can be expressed into another form:
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For example, the successive substitution for the convective term is given as
vkþ1

oukþ1

oy
� vk

oukþ1

oy
: ð4Þ
The convective term is linearized by the Newton�s method:
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; ð5Þ
where the subscripts k and k + 1 denote the kth and the (k + 1)th linearization step, respectively.
After linearization processes, Eq. (3) can be written in a general form of a first-order system:
Lu ¼ f; ð6Þ

where L is the first-order differential operator and can be written as:
L ¼ A1

o

ox
þ A2

o

oy
þ A0: ð7Þ
The coefficient matrix Ai, the force vector f and u (including velocity, pressure and vorticity) are given as

follows for the successive substitution:
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For the Newton�s linearization, the coefficient matrices A1 and A2 are same as those from successive sub-

stitution, but matrix A0 and force vector f are different and given as follows:
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0 0 0 0
ouk
ox

ouk
oy 0 0

ovk
ox

ovk
oy 0 0

0 0 0 1

2
66664

3
77775; f ¼

0

fx þ uk
ouk
ox þ vk

ouk
oy

fy þ uk
ovk
ox þ vk

ovk
oy

0

8>>>><
>>>>:

9>>>>=
>>>>;
: ð9Þ
For the Stokes problem, the convective item will be neglected and the Reynolds number is set one. There-

fore, the coefficient matrix and force vector will be described as
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3. Moving least-squares approximation

3.1. The MLS approximation scheme

The moving least-squares (MLS) approximation scheme is widely used in recent meshfree methods. Also

in the present LSMFM the MLS approximation is employed. In the sequel, the construction of the MLS

shape functions and their derivatives are briefly reviewed. More details can be found in [26].

The MLS approximation uh(x) of a continuous function u in the domain X is defined as
uhðxÞ ¼
Xm
i¼1

piðxÞaiðxÞ � pTðxÞaðxÞ; ð11Þ
where pT(x) = [p1(x), p2(x), . . . , pm(x)] is a complete monomial basis of m dimensions; a(x) is a vector con-

taining coefficients ai(x), i = 1, 2 , . . . , m , which are the functions of space coordinates x = [x, y, z]T.

Coefficients ai(x) are obtained by minimizing the error in the weighted least-squares sense. This yields the

following quadratic form:
J ¼
Xn

I

wIðxÞ pTðxIÞaðxÞ � ûI
� �2

; ð12Þ
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where wI(x), I = 1,2,. . .,n, are the weight function associated with node I which should be compactly

supported, n the number of points in the neighborhood of x for which the weight function wI(x) > 0, ûI
the approximation to the value u(xI) at the node xI.

To obtain the coefficients a(x), the quadratic form J in Eq. (12) is minimized:
oJ
oaðxÞ ¼ 2

Xn

I

wIðxÞpðxIÞ pTðxIÞaðxÞ � ûI
� �

: ð13Þ
Thus the coefficients a(x) can be determined by
aðxÞ ¼ A�1ðxÞBðxÞû; ð14Þ
where
AðxÞ ¼
Xn

I¼1

wIðxÞpðxIÞpðxIÞT; ð15aÞ

BðxÞ ¼ w1ðxÞpðx1Þ;w2ðxÞp2ðx2Þ; . . . ;wnðxÞpnðxnÞ½ �; ð15bÞ

ûT ¼ û1; û2; . . . ; ûn½ �: ð15cÞ
From Eq. (14), substituting a(x) in Eq. (11), the approximation uh(x) can be expressed as
uhðxÞ ¼
Xm
j¼1

pjðxÞajðxÞ � pðxÞTA�1ðxÞBðxÞû ¼ NðxÞû; ð16Þ
where N(x) is the shape function that is defined by
NðxÞ ¼ pTðxÞA�1ðxÞBðxÞ: ð17Þ
The first-order derivative of the MLS shape function can be calculated as follows:
N;i ¼ pT;iA
�1Bþ pTðA�1B;i þ A�1

;i BÞ; ð18Þ
where
A�1
;i ¼ �A�1A;iA

�1: ð19Þ
It should be noted that the number of neighbors at each integration point is at least equal to the basis

dimension (nm) for the regularity of A.

In this paper, linear complete basis in two-dimensional problem is used:
pðxÞ ¼ ½1; x; y�T: ð20Þ
The following weight function in [14] is employed.
wIðxÞ ¼
ffiffiffiffiffiffiffiffi
4=p

p
1� x�xIk k2

r2I

� �4

; x� xIk k < rI ;

0; x� xIk k P rI ;

8<
: ð21Þ
where rI is the size of nodal support selected by rI = ad with d denoting the nodal spacing, and constant a a

chosen proportional coefficient.
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3.2. Fast computation on shape functions and derivatives

In terms of consistency conditions for shape functions in the MLS approximation, the fast computation

on shape functions and derivatives can be obtained [27].

The shape functions can be described in the following form:
NIðxÞ ¼ aTpðxIÞwIðxÞ; ð22Þ
where a is the coefficient vector.

The linear consistency equation can be expressed as follows:
X
I

N IðxÞpðxIÞ ¼ pðxÞ ¼ 1 x y½ �T: ð23Þ
Substituting Eq. (22) into Eq. (23) results
Aa ¼ pðxÞ; ð24Þ
where matrix A is exactly the same matrix with Eq. (15a).

The derivatives of a can be obtained by differentiation of Eq. (24),
Aa;i ¼ p;iðxÞ � A;iAa: ð25Þ
Then, the derivatives of the shape function are given by
NI :i ¼ pðxIÞTa;iðxÞwIðxÞ þ pðxIÞTaðxÞwI;iðxÞ: ð26Þ

As indicated in [27], compared to standard EFG, this method can save about half computation time for
shape functions and derivatives in two-dimensional problems and even more in 3D case.
4. The least-squares formulation

In meshfree method, Galerkin method or collocation point method are usually used to implement the

discretization process. In the present work, the least-squares method is taken for the discretization in mesh-

free framework to employ its advantages in dealing with CFD problems and its robustness to integration
errors, which are mentioned in Section 1.

For the first-order system written as the standard form Eq. (6), the quadratic functional is defined as

follows:
IðuÞ ¼
Z
X
ðLu� fÞ2 dX ¼

Z
X
ðLu� fÞTðLu� fÞ dX: ð27Þ
Using Gauss quadrature for integration in background cells, Eq. (27) can be written in the discrete form:
IðuÞ ¼
XN cell

icell¼1

XNgauss

jgauss¼1

wjgaussðLu� fÞTðLu� fÞ; ð28Þ
where wjgauss is the weight factor at the integration point (including area information), Ngauss the number of

Gauss integration points in each background cell, and Ncell the total number of the background cells.

For all unknown variables, equal-order local approximation is employed. It should be noted that the

following necessary condition for the existence of the solution must be satisfied:
N cell � NGauss � N eq P Npoint � Ndof � Nbc; ð29Þ
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where Neq is the number of governing equations in the first-order system, Npoint the total number of nodes,

Ndof the number of degrees of freedom at each node and Nbc the total number of specified nodal degrees of

freedom at boundaries.

The approximation of u at each integration point can be written as Eq. (16). Then the stiffness matrix

and force vector for jth Gaussian integration point are:
kjgauss ¼ wjgauss LNð ÞTðLNÞ; ð30aÞ

fjgauss ¼ wjgauss LNð ÞTf: ð30bÞ
For Eq. (16), if there are Ndof variables at each node, the format of the shape function N is described as

follows:
N ¼ N 1I N 2I � � � NnI½ �; ð31Þ
where I is Ndof · Ndof identity matrix.

Assembling the stiffness matrix and force vector at the Gauss integration points in all background cells,

the linear algebraic equation is obtained:
KGÛ ¼ FG; ð32Þ

where KG is the global stiffness matrix, FG the global force vector, and Û the approximation to the global

vector of nodal degrees of freedom
KG ¼
XN cell

icell¼1

XNgauss

jgauss¼1

kjgauss ; ð33aÞ

FG ¼
XN cell

icell¼1

XNgauss

jgauss¼1

fjgauss : ð33bÞ
It should be noted that the global system matrix KG is symmetric and positive definite. Therefore, the result-

ing linear system of Eq. (32) can be solved by the matrix-free element-by-element Jacobi preconditioned

conjugate gradient (MFEBEJCG) method. It is simple to get the Jacobi preconditioned matrix. It needs

not to form global stiffness matrix and the stiffness matrix at each evaluation point, so that computation

cost can be reduced greatly [28]. It should be mentioned that the element-by-element technique is used
in FEM because assemblage process is performed on the element level. In meshfree methods, assemblage

process is carried out at all evaluation points. However, the same nomenclature is used in this paper.

It should be noted that the actual numerical values of field variables at nodal points, u(xJ),

J = 1,2,. . .,Npoint, are obtained as follows:
uðxJ Þ ¼
Xn

I¼1

NIðxJÞûI ð34Þ
4.1. Generation of evaluation points by quadtree algorithm

In Eq. (28), the evaluation points and the weight factors should be determined in background cells.

To deal with complex geometries of analysis domain in meshfree framework, simple construction of

background cells is essential. In this regard, several schemes could be considered to generate evaluation

points, such as quadtree/octree algorithm, Delaunay triangulation, Voronoi cell and so on [29,30].
However, for the effectiveness of meshfree method, the solution accuracy should not be degraded even



Fig. 1. Quadtree algorithm.

Table 1

Gauss quadrature rule for quadtree algorithm

No. of nodes in cell Quadrature order (rule 1) Quadrature order (rule 2)

The background cell cuts boundaries 0 2 · 2 2 · 2

1 2 · 2 2 · 2

The background cell does not cut boundaries 0 2 · 2 1 · 1

1 2 · 2 1 · 1

2 3 · 3 2 · 2

3 3 · 3 2 · 2

4 3 · 3 2 · 2
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with those simple integration schemes. The LSMFM satisfies this requirement since it is robust to inte-

gration errors [24].

In the present work, the quadtree algorithm is used in the two-dimensional geometry model. Quadtree

algorithm is a well-known algorithm in computational geometry, which is easy to construct evaluation

points for the complex model with Gaussian quadrature rule. The quadtree algorithm used in the present
work is as follows (Fig. 1):

(i) Determine the maximum number of nodes Nmax in each background cell. In this work, different Nmax is

used. Nmax = 4 is used if the cell does not cut boundaries, or else Nmax = 1.

(ii) Give a rectangular background domain to cover the computational domain.

(iii) Initial square background cells are defined according to ratio between width and height of computa-

tional domain, here called as mother cells.

(iv) If a mother cell contains more than Nmax nodes, then divide it into four squares with equal size, called
as daughter cells. Loop this step until the number of nodes in the each cell is less than or equal to Nmax.

(v) Generate the evaluation points in background cells in terms of the given Gaussian quadrature rule as in

Table 1. It should be pointed out the higher-order quadrature will be used for the background cells which

cut boundaries. Therefore the loss for the integration from such background cells can be reduced.

(vi) The evaluation points outside computational domains are not considered in calculation.
5. Numerical examples

5.1. Error estimates on the LSMFM for the Stokes problem

The Stokes problem has been studied for many years. The Stokes operator is a basic ingredient of the

incompressible Navier–Stokes equation. Therefore, the preliminary study on the Stokes problem will be
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carried out by LSMFM. In this section, the convergence characteristic and approximation accuracy will be

investigated.

For the LSMFM, the convergence characteristics depend on the regularity of differential operator L and

the approximation properties of the shape function. Here, general results on the convergence characteristics

of the first-order least-squares formulation are given. The details can be found in References [31–33].
For the Stokes problem, linear first-order differential operator L is strictly elliptic [31]. For the strictly

elliptic problems, if the MLS shape functions are employed, a priori error estimates in L2 and H1 norm

can be expressed as follows: there exist positive constants C0 and C1 such that
u� uh
�� ��

H1ðXÞC1h
m uj jHmþ1ðXÞ ð35aÞ
and
u� uh
�� ��

L2ðXÞC0h
mþ1 uj jHmþ1ðXÞ; ð35bÞ
where m is the degree of complete polynomial in the basis and h is the nodal spacing.

In the numerical example, the following L2 and H1 error norms are used as error measures
u� uh
�� ��

L2
¼

Z
X
ðu� uhÞ2 dX

� �1=2

; ð36aÞ

u� uh
�� ��

H1 ¼
Z
X

ðu� uhÞ2 þ ðu;x � uh;xÞ
2 þ ðu;y � uh;yÞ

2
h i

dX

� �1=2

: ð36bÞ
The corresponding relative error norms are
u� uh
�� ��rel

L2
¼ u� uhk kL2

uk kL2
; ð37aÞ

u� uh
�� ��rel

H1 ¼
u� uhk kH1

uk kH1

: ð37bÞ
In the present study, a cavity model will be presented for the error estimate on the Stokes problem. It has a
unit square domain (0 6 x 6 1, 0 6 y 6 1) with the polynomial divergence-free velocity field [1,31,34] as
Fig. 2. Boundary conditions for the Stokes problem.
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uðx; yÞ ¼ x2ð1� xÞ2ð2y � 6y2 þ 4y3Þ;
uðx; yÞ ¼ y2ð1� yÞ2ð�2xþ 6x2 � 4x3Þ
and the pressure field is
pðx; yÞ ¼ x2 � y2 � 0:25
with the vorticity field as
xðx; yÞ ¼ �x2ð1� xÞ2ð2� 12y þ 12y2Þ þ y2ð1� yÞ2ð�2þ 12x� 12x2Þ:

The boundary conditions are shown in Fig. 2.

In practical applications, the domain of background cells may not coincide with the complex computa-

tional domain, background cells would cut the boundaries of the computational domain arbitrarily such

that the integration for the discretized system becomes more inaccurate in the vicinity of boundaries. In
order to investigate the effect of inaccurate integration on the solution, we construct background cells with

the quadtree algorithm in which the background domain does not coincide with the computational domain.

Besides this, in general, the solutions will be affected by the nodal distribution, Gauss quadrature rule and

the size of nodal support in the case of the present linear basis functions and weight function. Therefore

different schemes will be designed to analyze the effect of the above parameters on the convergence rate

and the accuracy of the solution. Irregular nodal distribution, inclined background domain and uniform

nodal distribution with simple background cell will be devised. Irregular nodal distributions are presented

in Fig. 3. The inclined background domain is built and shown in Fig. 4 to test the effect of inaccurate inte-
gration on the results, where the same nodal distributions in Fig. 3 are used. For the quite simple geometry,

the simple nodal distribution will be constructed, where the nodes coincide with the vertices of the back-

ground cells. It is presented in Fig. 5. According to the number of the background cells, nodes and bound-

ary conditions, the reduced integration, i.e., one-point integration, can be also used in the simple

background cells. Table 2 lists the six schemes at different nodal distributions and quadrature rules in pres-

ent numerical example. For Scheme 1 and Scheme 2, the background domain coincides with the computa-

tional domain and irregular nodal distributions are investigated. The inclined background domain and

irregular nodal distributions are used in Scheme 3 and Scheme 4. Simple background cells and uniform
nodal distributions will be constructed in Scheme 5 and Scheme 6. Quadrature rules in Table 1 will be

employed in the leading four schemes. The uniform quadrature rule will be used in Scheme 5 and Scheme

6. In present study, equal-order MLS approximation is taken with the linear basis function. The size of

nodal support can be changed by the proportional coefficient a, here a = 1.5 is used. The nodal spacing

d is defined as the maximum distance from the closest nodes to the given node in four quadrants. The

boundary conditions are enforced by the penalty method. The residual of the linear system for all variables

is used as the stopping criterion of MFEBEJCG iteration.
residual ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNpoint�Ndof

i¼1

vuut r2i < 10�6; ð38aÞ
where i denotes the ith degree of freedom.

Here let us define the following relative error of each variable in L2-norm between two schemes, i.e.,

between Scheme 1 and Scheme 3.
Relative error ¼
UScheme1

i �UScheme3
i

�� ��
2

UScheme1
i

�� ��
2

with UScheme1
i

�� ��
2
¼

ffiffiffiffiffiffiffiffiffi
XNpoint

i¼1

vuut ðUScheme1
i Þ2;
where i denotes velocity, pressure and vorticity, respectively.



Fig. 3. Irregular nodal distributions.
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Fig. 4. Inclined background domain which is not coincident with the computational domain.

Fig. 5. Regular nodal distribution with simple background cells in which nodes are at the vertices of background cells.
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The above definition on relative error can be also employed for the comparison between Scheme 2 and

Scheme 4.

In present study, all error norms for the velocity, the pressure and the vorticity in Eqs. (36a) and (36b)
are plotted with respect to the number of nodes.

In Fig. 6(a)–(f), it can be found that the convergence rates for all variables in L2 norm and H1 norm are

consistent with the error estimate theory. The uniform nodal distributions with simple background cells



Table 2

Schemes for error estimates

Scheme No. Nodal

distribution

Algorithms to

construct background cells

The relationship between the

background domain and

the computational domain

Quadrature rules

1 Irregular Quadtree Coincident Rule 1 in Table 1

2 Irregular Quadtree Coincident Rule 2 in Table 1

3 Irregular Quadtree Not coincident Rule 1 in Table 1

4 Irregular Quadtree Not coincident Rule 2 in Table 1

5 Uniform Simple way Coincident 1 · 1

6 Uniform Simple way Coincident 2 · 2
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have higher rate of convergence than the irregular nodal distributions with quadtree algorithm. For the uni-

form nodal distribution with simple background cells, the convergence rate for velocity and vorticity in L2

norm using the one-point quadrature is the same as those using higher-order quadratures, but the conver-

gence rate for pressure at one-point quadrature is lower than that at higher-order quadrature. The conver-

gence rate of each variable in H1 norm using one-point quadrature is higher than those using higher-order

quadratures.

In comparison with Scheme 1 and Scheme 2, on the whole, it can be found that the results at the lower-

quadrature with quadtree algorithm will be more accurate than those at higher-order quadrature. In com-
parison with Scheme 3 and Scheme 4, the results at low-order quadrature may not accurate than those at

higher-lower quadrature except the solutions for velocity and vorticity in the relative H1 error norm. This

may be resulted from the effect of inaccurate integration, which will combine with quadrature rule in the

background cells to influence the solutions. Therefore lower-order quadrature rule is suggested for the

irregular nodal distributions.

Comparing Scheme 1 with Scheme 3, and Scheme 2 with Scheme 4, it can be found that the accuracy of

the solution is obviously degraded because some background cells cut boundaries. From Figs. 7 and 8, it

can be seen that the discrepancy will become lower with respect to the number of nodes. For the irregular
nodal distribution in Fig. 3(f), the maximum relative error between Scheme 1 and Scheme 3 is 0.19%, the

minimum value is 0.012%; in comparison with Scheme 2 and Scheme 4, the maximum error and the min-

imum relative error are 1.06% and 0.046%, respectively. Thus the effects of inaccurate integration on the

accuracy of the solution will be quite small if the present quadtree algorithm and quadrature rule are used

for the large number of nodes.

In comparison among Schemes 1, 2, 5 and 6, it is obviously seen that the results for uniform nodal dis-

tribution are more accurate than those from irregular nodal distributions except those in the relative L2

error norm for velocity. For the uniform nodal distributions in Schemes 5 and 6, the solutions for each
variable at one-point quadrature have the better approximation accuracy than those at higher-order quad-

rature. Namely, the residual of governing equations will be more close to zero if one-point quadrature is

employed for present size of nodal support. For the For the Stokes problem with quite simple geometry,

where computational domain coincide with the background domain and the simple background cells

can be constructed, it is remarkable that the LSMFM gives more accurate solution using one-point quad-

rature rule for the suitable size of nodal support if the necessary condition for existence of the solution is

satisfied.

It is well known that the accuracy will be improved with respect to the size of nodal support in meshfree
method. But too large size of nodal support will lead to the bad approximation accuracy because the shape

functions are strongly non-polynomial. At the same time, the computation cost will be very higher. There-

fore, the relative large size of nodal support is suggested.



Fig. 6. Relative L2 and H1 error norms and convergence rates of velocity, pressure and vorticity.
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Fig. 7. Relative error between Scheme 1 and 3.

Fig. 8. Relative error between Scheme 2 and 4.
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Fig. 9. The boundary conditions for the cavity flow.

Fig. 10. The results for cavity-driven flow: (a) velocity, (b) streamline, (c) pressure contour and (d) vorticity contour.
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5.2. Cavity flow for Stokes problem

In present study, driven-cavity flow in unit square domain (0 6 x 6 1, 0 6 y 6 1) can be also used to test

the LSMFM for the Stokes problem [34–36].
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The boundary conditions are shown in Fig. 9. On the top side u = 1 and v = 0 are given, and no slip bound-

ary conditions, i.e., u = 0, v = 0, are prescribed on the left, right and bottom sides. At the mid-point of the

bottom side, the pressure condition p = 0 is specified. We have x = �ou/oy + ov/ox = �1/h + 0 = �1/h =

�100 at the two upper corners, where h is the closest distance from the nodes on the left side or the right side

to the corresponding node at the upper corner, x = 0 are given at the two bottom corners. As an initial value
for the iterative process of matrix-free element-by-element Jacobi preconditioned conjugate method

(MFMBMJCG), u = v = p = x = 0 are taken.

As mentioned in section 5.1, owing to the quite simple geometry for the cavity flow problem, simple uni-

form square background cells can be built, where the vertices of the cells coincide with the nodes. 10,201

nodes and 10,000 cells are constructed. The linear basis and one-point Gauss quadrature rule are used.
Table 3

The location and the value of the stream function (w) for the eddy centers

Shankar [36] LSMFM

x y w x y w

Primary eddy 0.5 0.24 �0.10005 0.50 0.761 �0.09811

Corner eddy 0.038 0.038 2.227 · 10�6 0.0358 0.0378 1.937 · 10�6

Fig. 11. The geometry and boundary conditions for the flow past a circular cylinder.

Fig. 12. The nodal distribution for the flow past a circular cylinder.
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Equal-order MLS approximation is employed. The value of a used is 1.5. The boundary conditions are en-

forced by the penalty method. The same stopping criterion of MFEBEJCG iteration in Eq. (38) is adopted

in this example.

Fig. 10 presents the computed results of velocity, streamlines, and the contours of vorticity and pressure.

The comparisons between the results from Shankar [36] and solutions of LSMFM are listed in Table 3.
Here, the location of the eddy centers and the value of the stream function at the eddy center are listed. The

results of LSMFM agree well with those of Shankar.

5.3. The flow past a circular cylinder

The study for the flow past a circular cylinder has long history in experimental and numerical analysis

[37–51]. It has been used as a benchmark to investigate a new method for the steady or unsteady incom-

pressible viscous flow problem. In present study, only steady flow past a circular cylinder at low Reynolds
numbers (640) will be investigated by LSMFM.

Figs. 11 and 12 show the geometry dimension, boundary conditions and nodal distribution. u = 1 and

v = 0 are given on the inlet, top and bottom sides. u = 0, v = 0, are prescribed along the surface of the cir-

cular cylinder. At the mid-point of the outflow side, the pressure condition p = 0 is specified. In calculation,

u = 1, v = 0, p = 0, x = 0 in the whole computation domain except along the surface of the cylinder with

u = 0, v = 0 are taken as an initial trial solution.

In the square domain surrounding the cylinder (�3 6 x 6 3, �3 6 y 6 36), radial-type nodal distribu-

tion is constructed. The uniform nodal distribution is built in the other domain.
In the numerical example, the different number of nodes and proportional coefficient of the nodal

support a will be used for the computation at different Reynolds numbers. For the computation at

Re = 10 will be done with 9341 nodes and a is 1.2. For Re = 20, 26,896 nodes is built and a is 1.2. The solu-

tion for Re = 40 is based on 34,038 nodes and a is 1.5. Background cells are constructed by quadtree
Fig. 13. The wake length at different Reynolds numbers.



Fig. 14. The separation angle at different Reynolds numbers.
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algorithm with quadrature rule2 in Table 1. Equal-order MLS approximation is employed. Newton�s meth-

od is used to linearize the convective term. The boundary conditions are enforced by the penalty method.

The stopping criterion of MFEBEJCG iteration is the same as that in Eq. (38a). The stopping criterion

for Newton�s linearization is
Ukþ1 �Uk
�� ��

2

Uk
�� ��

2

< 10�5; ð38bÞ
Fig. 15. The drag coefficient at different Reynolds numbers.



Fig. 16. The distribution of the pressure coefficient on the cylinder surface.
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where kUkk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNpoint�Ndof

i¼1

q
ðUk

i Þ
2
is the L2-norm of all unknown variables, the subscripts k and k + 1

denote the k-th and the (k + 1)-th linearization step, respectively.

For the fluid flow past a circular cylinder, the characteristic quantities usually include the wake length L,

the separation angle hs, the drag coefficient CD and the pressure coefficient Cp. The wake length, L, is

defined as the distance from the rear of the cylinder to the end of the separated region. The most accurate

way is to use zero-value contour of the x-component of the velocity to get the position of stagnation point
Fig. 17. The vorticity distribution on the surface of the cylinder.



Fig. 18. The streamline at different Reynolds numbers: (a) The streamline at Re = 10. (b) The streamline at Re = 20. (c) The streamline

at Re = 40.
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along the x-axial. The separation angle, hs, is determined from zero-vorticity at the surface of the cylinder.

The drag coefficient CD is computed by
CD ¼ F D=ðqV 2
0aÞ; ð39Þ
where FD is drag force, q the characteristic fluid density, a the radius of the circular cylinder.



Fig. 19. The pressure contour at different Reynolds numbers: (a) The pressure contour at Re = 10. (b) The pressure contour at Re = 20.

(c) The pressure contour at Re = 40.
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The drag force on the circular cylinder can be expressedI I

F D ¼

s

�p cos/ dsþ
s

s sin/ ds; ð40Þ
where p is the pressure along the cylinder surface, s the shear force on the cylinder surface, / the angle be-

tween the normal to the surface element and the flow direction, s the total surface area of the circular

cylinder.



Fig. 20. The vorticity contour at different Reynolds numbers. (a) The vorticity contour at Re = 10. (b) The vorticity contour at

Re = 20. (c) The vorticity contour at Re = 40.
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The pressure coefficient is defined by
Cp ¼ 2ðp � p1Þ=ðqV 2
0Þ; ð41Þ
where p1 is the uniform pressure at large distance.

The comparisons of the wake length L, the separation angle hs, the drag coefficient CD, the distribution

of the pressure coefficient Cp and the vorticity x along the cylinder surface by LSMFM with other
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experimental and numerical results are presented in Figs. 13–17. t should be pointed out that the orienta-

tion angle, h, starts from the front position of the cylinder surface at the x-axis to the rear point of the cyl-

inder surface at the x-axis in anticlockwise. From these results, it can be seen that the good agreements are

obtained. Figs. 18–20 present the streamline, pressure contour and vorticity contour at different Reynolds

numbers, respectively.
6. Concluding remarks

The least-squares meshfree method has been presented for the numerical analysis of incompressible

viscous flow. The presented method employs the first-order velocity–pressure–vorticity formulation for

two-dimensional steady incompressible Navier–Stokes problem. For a second-order system, at least qua-

dratic completeness for MLS shape functions is required to ensure convergence since the second derivative
of the variable is involved, so the quadratic basis function and large size of nodal supports should be used.

But for first-order velocity–pressure–vorticity system, linear basis function can be used. Also, costly solu-

tions of Poisson equation are avoided. However, the discretized system must be solved efficiently due to the

increase of unknown variables and additional equations. For LSMFM, the resulting system is symmetric

and positive definite, and can be efficiently solved by iterative methods for large-scale problems. All exam-

ples in the present work are computed by matrix-free element-by-element Jacobi preconditioned conjugate

method. All governing equations are computed in the fully coupled manner. No special treatments, such as

upwinding or adjustable parameters are required. Equal-order MLS approximation is employed for all un-
known variables and Gauss quadrature integration in background cells is performed. Quadtree algorithm is

used to construct background cells with arbitrary nodal distributions, which can be applied to more com-

plicated problems.

For LSMFM, the numerical results are affected by the nodal distribution, the size of nodal support and

the order of Gauss quadrature in background cells. The numerical study on the error estimates in the

Stokes problem illustrates the effects of the size of nodal support and the order of Gauss quadrature on

the convergence rate and the approximation accuracy. It should be noted that low-order quadrature in

the background cells should be employed regardless of nodal distributions and the ways to construct back-
ground cells. For the Stokes problem in quite simple geometry, where computational domain coincides with

the background domain and the simple background cells can be constructed, LSMFM gives excellent

results using one-point quadrature in the background cell at the suitable size of nodal support. Even in case

that the background domain does not coincide with the computational domain, the effects of inaccurate

integration on the accuracy of the solution would be quite small if the quadtree algorithm and correspond-

ing quadrature rule in present study were employed for the large number of nodes.

The results of the cavity flow for the Stokes problem and the flow past a circular cylinder at low Rey-

nolds numbers for two-dimensional steady incompressible Navier–Stokes problem further show that the
LSMFM can be successfully employed the incompressible viscous flow. The presented LSMFM preserves

the useful meshfree properties. For the discretization of analysis domain, only nodal distribution is required

and integration is performed with simply constructed background cells. Also the implementation of an

adaptive strategy could be facilitated in this framework. The adaptive analysis using LSMFM on CFD

problems and the application on the unsteady incompressible viscous flow will be presented in future.
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